Similar Articles |
|
IEEE Spectrum December 2010 Neil Savage |
One Graphene Device Makes Three Amplifiers Logic device could be even more multipurpose |
IEEE Spectrum November 2010 Sinitskii & Tour |
Graphene Electronics, Unzipped By unrolling tiny carbon tubes, you can produce superthin sheets with truly extraordinary electronic properties |
Chemistry World February 13, 2011 James Urquhart |
Guiding electrons through graphene US researchers have created a graphene-based device that guides electrons through the material in the same way an optical fiber guides light, using electrical gates. |
Chemistry World October 19, 2011 Kate McAlpine |
Ironing Out the Wrinkles in Graphene Ribbon Fabrication Building graphene on a wrinkled surface allows researchers to cut out parallel graphene nanoribbons. |
IEEE Spectrum October 2005 Salvatore Coffa |
Light From Silicon For decades, silicon was a semiconducting dim bulb, but now we can make it into LEDs that match the best made from more exotic materials |
IEEE Spectrum April 2012 Neil Savage |
Graphene's New Rival Molybdenum disulfide helps graphene transistors work better -- and it makes good nanocircuits on its own, too |
IEEE Spectrum October 2007 Bohr et al. |
The High-k Solution Microprocessors coming out this fall are the result of the first big redesign in CMOS transistors since the late 1960s. |
IEEE Spectrum February 2006 Holonyak & Feng |
The Transistor Laser Ultrafast transistors that output optical and electrical signals open a new computing frontier. |
Chemistry World February 28, 2007 Richard Van Noorden |
First Graphene Transistors May Herald Future of Electronic Chips Researchers claim to have created the world's first practical transistors cut from ribbons of graphene, a single layer of carbon atoms. |
IEEE Spectrum April 2012 Liu et al. |
MEMS Switches for Low-Power Logic A modern twist on a trusted old technology -- the electromechanical relay -- could lead to ultralow-power chips |
IEEE Spectrum August 2008 Neil Savage |
Graphene Could Make Nonvolatile Molecular Memory European researchers build graphene-based switches |
Technology Research News May 5, 2004 Eric Smalley |
Y Switches Set up Low-Power Logic Researchers are looking into Y-branch switches, which have the potential to use less energy because they turn circuits on and off by directing electrons in one of two directions rather than opening and closing the circuit. |
IEEE Spectrum November 2010 Bedair et al. |
Spintronic Memories to Revolutionize Data Storage Superdense MRAM chips based on the bizarre property of electron spin could replace all other forms of data storage |
Wired October 2001 Wil McCarthy |
Ultimate Alchemy Research into artificial atoms could lead to one startling endpoint: programmable matter that changes its makeup at the flip of a switch... |
IEEE Spectrum July 2012 Miguel Miranda |
The Threat of Semiconductor Variability As transistors shrink, the problem of chip variability grows |
Chemistry World September 8, 2011 Jon Cartwright |
Wonder material not so wonderful Contrary to the widely held view, chemists think graphene electrodes are mostly ineffective at transferring electrons, implying that graphene is a poor choice for sensing applications. |
IEEE Spectrum December 2007 Joshua J Romero |
Japanese Engineers Turn High-k Dielectric Transistor Problem on Its Head One gate metal and two high-k dielectrics could mean a cheaper and easier 45-nanometer CMOS manufacturing process for transistors. |
IEEE Spectrum February 2013 Rachel Courtland |
Graphene Goes the Distance in Spintronics Experiments push electron-spin signals to record lengths |
IEEE Spectrum October 2005 Paniccia & Koehl |
The Silicon Solution In the future, ordinary silicon chips will move data using light rather than electrons, unleashing nearly limitless bandwidth and revolutionizing computing |
IEEE Spectrum September 2007 Lieven Vandersypen |
Dot-to-Dot Design Researchers are connecting tiny puddles of electrons in a chip and making them compute -- the quantum way. |
IEEE Spectrum July 2011 Joel E. Moore |
Topological Insulators Quantum magic can make strange but useful semiconductors that are insulators on the inside and conductors on the surface |
Chemistry World September 29, 2015 Jon Cartwright |
Graphene band gap heralds new electronics Scientists in the US and France have produced graphene with a record high band gap of half an electronvolt (0.5 eV), which they claim is sufficient to produce useful graphene transistors. |
Chemistry World November 2011 Philip Ball |
Column: The Crucible Growing graphene by CVD might benefit from an initial injection of hexagonality to start off on the right footing. |
IEEE Spectrum May 2011 Keane & Kim |
Transistor Aging Measuring the degradation of microprocessors is tricky. Doing it better would unleash more processing power. |
Chemistry World December 11, 2013 Jon Cartwright |
Vibrations couple light to graphene Two independent groups have shown that light can be effectively turned into surface plasmons in graphene if the carbon sheet is made to vibrate. |
Technology Research News November 3, 2004 Eric Smalley |
Single Field Shapes Quantum Bits Researchers have recently realized that it may be possible to control the electrons in a quantum computer using a single magnetic field rather than having to produce extremely small, precisely focused magnetic fields for each electron. |
Chemistry World June 10, 2009 Jon Cartwright |
'Bilayer' graphene shows tunable bandgap Since its discovery in 2004, the carbon-based material known as graphene has revealed a stream of attractive properties. |
Technology Research News January 26, 2005 |
The How It Works Files Nanotechnology: The laws of physics behave differently at very small scales. At the nanoscale, electrons travel more quickly through wires, transistors can mete out electrons one at a time, objects stick to each other, and light can bend matter. |
Chemistry World December 10, 2008 Hayley Birch |
New routes to gram-scale graphene Australian researchers have reported making grams of graphene using nothing more complicated than sodium and ethanol |
IEEE Spectrum October 2011 Ozpinec & Tolbert |
Silicon Carbide: Smaller, Faster, Tougher Meet the material that will supplant silicon in hybrid cars and the electric grid |
IEEE Spectrum August 2007 Saswato R. Das |
Scheme for a Single-Photon Transistor Researchers have taken a big step toward building a really fast computer that uses light rather than electricity to perform calculations. |
Chemistry World February 6, 2014 James Urquhart |
Graphene ribbons exceed theoretical conduction limit Researchers in the US and Europe have observed exceptional electron transport in graphene nanoribbons, which actually exceeds theoretical predictions for perfect graphene. |
Technology Research News February 12, 2003 Eric Smalley |
Logic scheme gains power Researchers from the University of Notre Dame have pushed an alternative computer chip architecture a step forward by finding a way to refresh the short-lived signals the scheme uses to represent the 1s and 0s of digital information. |
BusinessWeek September 23, 2010 Oliver Staley |
Innovator: Walt de Herr Smaller, power-hungry processors push the limits of silicon. Physicist Walt de Heer thinks nanotechnology can provide a solution. |
IEEE Spectrum January 2008 Alexander Hellemans |
Thermal Transistor: The World's Tiniest Refrigerator Thermal transistors refrigerate one electron at a time and physicists plan to compute with heat. |
Chemistry World August 29, 2012 James Urquhart |
Graphene--boron nitride stitching to sew up electronics The race to create ultrathin, transparent and flexible electronic devices using graphene -- the most conductive material known to exist -- has a promising new contender. |
Scientific American February 2009 Steven Ashley |
Graphene Electronics Inches Closer to Mass Production These carbon nanosheets are considered the future of smaller, faster and cheaper electronics |
Technology Research News October 22, 2003 |
Single electrons perform logic The ultimate in transistors, which turn on and off in response to a flow of electricity, is a device that can be tripped by a single electron. Researchers from Hokkaido University have put together an AND logic circuit made from four single-electron tunneling transistors. |
Chemistry World January 29, 2009 James Urquhart |
Graphene to graphane by chemical conversion An international research team have successfully converted graphene - sheets of carbon just a single layer of atoms thick - into its hydrogenated equivalent, graphane. |
Chemistry World November 27, 2006 Simon Hadlington |
Getting the Dope on a Single Atom of Dopant Scientists have successfully probed the electronic and quantum mechanical properties of a single atom of dopant in a silicon transistor. The research could provide important information necessary for the development of quantum computers. |
Technology Research News December 19, 2005 |
Quantum computing: qubits Quantum bits, or qubits, are the quantum equivalent of the transistors that make up today's computers. There are four established qubit candidates: ion traps, quantum dots, semiconductor impurities, and superconducting circuits. |
Chemistry World June 19, 2015 |
Graphene beyond the hype For the past 10 years, graphene has popped up in many headlines. Emma Stoye looks at whether current progress matches up to the promises. |
Chemistry World January 23, 2014 Andy Extance |
Phosphorene discovery positively impacts 2D electronics US researchers have made phosphorus into an analog of graphene, dubbed phosphorene, allowing practical electronic devices made from such two-dimensional materials. |
Chemistry World August 13, 2012 Hayley Birch |
Graphene reactions driven by substrate not reactant In chemical reactions, the reactants determine the level of reactivity. Not for graphene though -- the one-atom-thick sheets of carbon can react vigorously or barely at all to the same chemicals, depending on the substrate they're sitting on. |
Technology Research News September 8, 2004 |
Nanotube Transistor Has Power Aiming to make electrical componets faster, researchers are working to make components from carbon nanotubes, which are rolled-up sheets of carbon atoms that can be smaller than a nanometer in diameter. |
Chemistry World April 3, 2014 Tim Wogan |
Growing great graphene on germanium Macroscopic films of monolayer, single crystalline graphene free of the defects that dog other production methods have been grown on germanium. |
Technology Research News August 11, 2004 Eric Smalley |
Chips measure electron spin Practical quantum computers are at least a decade away, and some researchers are betting that they will never be built. But a pair of recent experiments may prove them wrong. |
Industrial Physicist Feb/Mar 2004 Eric J. Lerner |
Briefs Opening the x-ray water window... Zero thermal expansion... Magnetoresistor computing... A pressure-driven battery |
IEEE Spectrum July 2012 Alexander Hellemans |
The Quest for 2-D Silicon Silicene -- the silicon analogue to graphene -- could have amazing electronic abilities |
Industrial Physicist Konstantin Likharev |
Hybrid Semiconductor-Molecular Nanoelectronics Many physicists and engineers believe that the impending crisis due to limitations in CMOS technology may be resolved only by a radical paradigm shift from purely CMOS technology to hybrid semiconductor-molecular circuits. |