Similar Articles |
|
Technology Research News January 26, 2005 |
Metals Speed Clear Circuits Researchers have improved the performance of a new type of transparent transistor. The zinc tin oxide thin-film transistor is transparent, difficult to scratch, and conducts electricity an order of magnitude faster than previous efforts using the same class of material. |
Technology Research News December 15, 2004 |
See-Through Circuits Speed up Researchers have moved transparent semiconductors forward with an indium gallium zinc oxide mixture that can be deposited on plastic, is transparent, and potentially performs one to three orders of magnitude better than today's plastic transistors. |
Technology Research News March 23, 2005 |
Layers promise cheap circuits The challenge is making organic transistors that work well electronically. |
Technology Research News November 19, 2003 |
Plastic display circuit shines Researchers from the University of Tokyo have taken a step forward by fabricating on a glass surface a circuit that contains an organic light-emitting diode and an organic thin-film transistor. The diode was bright enough to be used in a display, according to the researchers. |
IEEE Spectrum May 2011 Wager & Hoffman |
Thin, Fast, and Flexible Semiconductors Amorphous oxide semiconductors promise to make flat-panel displays faster and sharper than today's silicon standby. |
Technology Research News November 5, 2003 |
Process prints silicon circuits Researchers from Princeton University have demonstrated a way to use a flexible stamp to print thin-film transistors. The researchers' eventual goal is to directly print electronics on flexible surfaces. |
Technology Research News October 22, 2003 |
Nanowires boost plastic circuits The move is on to develop flexible, cheap, plastic electronics, but so far organic circuits have fallen far short of silicon chip performance. Researchers from the Hahn-Meitner Institute in Germany have moved the field forward with a new way to make flexible transistors. |
PC Magazine April 19, 2006 |
Smart Glass Electronics engineer John Wager has invented the world's first transparent integrated circuit, which could be the basis of now-you-see-it, now-you-don't displays. |
Chemistry World June 18, 2015 Suzanne Howson |
Nano-accordions stretch the boundaries for flexible electronics Scientists in the US have unveiled a conductive and transparent material that also stretches, thanks to its corrugated design. |
Technology Research News March 10, 2004 Kimberly Patch |
Tiny pumps drive liquid circuits Researchers from the University of Illinois at Urbana-Champaign and Lucent Technologies' Bell Laboratories have combined microfluidics and organic electronics to make a tunable plastic transistor that could enable low-cost methods to drive, control and monitor labs-on-a-chip. The device can also use tiny amounts of fluid to adjust optical devices. |
Technology Research News February 26, 2003 |
Stamp bangs out plastic circuits Today's transistors are etched from silicon wafers in a multi-step process that involves laser beams, chemicals and clean rooms. A simpler process would make for cheaper computer chips, and a gentler process would allow for transistors of different materials. |
National Defense August 2008 Grace V. Jean |
Harnessing the Sun's Energy Through Transparent Photovoltaics Researchers here have developed a small transparent solar cell prototype that may one day capture sunlight streaming in through a window and produce enough electricity to power homes and office buildings. |
Technology Research News June 4, 2003 Kimberly Patch |
Plastic transistors go vertical Researchers from the University of Cambridge in England have brought inexpensive, practical organic transistors a step closer to your grocery cart by devising a pair of processes that form small, vertical transistors from layers of printed polymer. |
Chemistry World April 28, 2011 Mike Brown |
Carbon nanotubes in large panel displays US researchers have incorporated carbon nanotubes into organic light-emitting transistors to create devices that rival the performance of their silicon counterparts. |
Technology Research News September 22, 2004 |
Nanowire Makes Standup Transistor Researchers have devised a simple way to make a set of vertical transistors from nanowires. |
Technology Research News December 17, 2003 |
Organic transistors get small Researchers from Cornell University have shown that it is possible to fabricate useful organic thin film transistors that have a channel length as small as 30 nanometers. The smaller the channel, the faster the transistor. Previously, organic TFT channel lengths were limited to about 100 nm. |
Technology Research News March 9, 2005 |
Nanotubes Boost Molecular Devices Researchers have constructed an extremely small transistor from a pair of single-walled carbon nanotubes and organic molecules. The tiny transistor could eventually be used in ultra-low-power electronics. |
Chemistry World December 10, 2009 Simon Hadlington |
Flexible organic flash memory Researchers have succeeded in making an elusive component of organic electronics: a flash memory transistor that can be incorporated into a thin, flexible plastic sheet. |
Technology Research News October 22, 2003 |
Single electrons perform logic The ultimate in transistors, which turn on and off in response to a flow of electricity, is a device that can be tripped by a single electron. Researchers from Hokkaido University have put together an AND logic circuit made from four single-electron tunneling transistors. |
IEEE Spectrum September 2008 |
Paper Transistor Researchers from Universidade Nova de Lisboa, in Portugal, say they've made a transistor in which paper acts as a functional component. |
Chemistry World January 8, 2014 Simon Hadlington |
Flexible electronics get even more bendy Researchers in Switzerland have developed a method to create electronic membranes that are thin and flexible enough to wrap around a human hair. |
Chemistry World November 29, 2011 Kate McAlpine |
Print quality nanotubes control LED switching Researchers in California have developed a way to print transistors made of carbon nanotubes and have used them to turn an organic light emitting diode on and off. |
Technology Research News December 3, 2003 |
Carbon boosts plastic circuits Researchers from the California Institute of Technology have devised an inexpensive way to add better-conducting organic source and drain electrodes to organic thin-film transistors. |
Chemistry World November 30, 2011 Mindy Dulai |
How to make a crab shell see-through Researchers in Japan have made a crab shell transparent. Then, using knowledge gained from this activity, they created a transparent nanocomposite sheet, incorporating powdered chitin from crab shells. |
IEEE Spectrum August 2005 Justin Mullins |
Shedding Light On Organic Transistors The first single-crystal organic transistor that can be switched on and off by light is giving physicists a unique peek into the way photons interact with organic semiconductors. The new device could have a major impact on the way OLED displays are manufactured. |
Information Today September 2000 |
E Ink Agreement with Lucent Will Help Develop Electronic Paper Agreement may accelerate the time when e-books and newspapers resembling flexible plastic sheets will be available for millions of users. |
IEEE Spectrum February 2013 Andrew J. Steckl |
Electronics on Paper Paper electronics could pave the way to a new generation of cheap, flexible gadgets |
Technology Research News April 7, 2004 Eric Smalley |
Angle speeds plastic transistor Going with the flow is a good way to pick up speed, particularly for plastic transistors. Rotating the crystal 180 degrees can change the transistor's performance by as much as 3.5 times. |
Technology Research News December 17, 2003 Eric Smalley |
Microfluidics make flat screens A new method for making big, cheap flat screen displays is a bit like making muffins. Pour liquid polymer into microfluidic channels aligned above an array of electrodes, let cure, and you have organic thin film transistors. |
Technology Research News May 19, 2004 |
Nanotube Makes Metal Transistor Researchers from the University of Illinois have found a way to produce a field effect in a metallic single-wall carbon nanotube that conducts electricity 40 times more efficiently than copper. The metal transistor could be used in practical applications in five to ten years. |
IEEE Spectrum October 2005 Stephen Forrest |
The Dawn of Organic Electronics Organic semiconductors are strong candidates for creating flexible, full-color displays and circuits on plastic. |
Technology Research News June 4, 2003 |
DNA part makes transistor Researchers from the University of Lecce in Italy and the University of Bologna in Italy have produced a transistor made from a derivative of one of the four bases that make up DNA. |
Chemistry World July 3, 2012 Simon Perks |
Ultrafast transistors created in a vacuum Scientists at the University of Pittsburgh, US, have come up with a new type of transistor that uses a vacuum to conduct electrons a hundred times faster than the conventional solid-state version. |
Chemistry World January 5, 2011 Jon Cartright |
Silk woven into transistors Researchers in Sweden and Spain have created transistors woven from modified silk fibres. The breakthrough bodes well for a new generation of electronic circuits that can be incorporated into fabrics or inserted into biological environments. |
Technology Research News September 22, 2004 Eric Smalley |
Flexible Sensors Make Robot Skin Researchers have devised pressure-sensor arrays that promise to give objects like rugs and robots the equivalent of one aspect of skin -- pressure sensitivity. |
Technology Research News October 20, 2004 |
Nanotubes form transparent film A maximum amount of contact between nanotubes within the film makes it a good electrical conductor. The film could eventually be used to make foldable computer displays, infrared cameras and line-of-sight optical communication devices. |
PC World December 3, 2001 Martyn Williams |
AMD Announces Another Chip Advance Company's new transistor is five times smaller than current models, leading to faster and more complex chips... |
IEEE Spectrum January 2009 Prachi Patel-Predd |
The Trouble With Touch Screens Scientists search for a replacement for indium-tin oxide, a transparent conductor that's vanishing fast. |
Technology Research News January 28, 2004 |
Nanotubes tied to silicon circuit Connecting minuscule nanotube transistors to traditional silicon transistors enables the atomic-scale electronics to communicate with existing electronic equipment. |
Chemistry World September 8, 2011 Heather Montgomery |
Smart glass for energy efficient windows Scientists from China and the US have produced glass that responds to its environmental temperature, making it a promising material for energy efficient windows. |
Technology Research News February 11, 2004 |
All-plastic display demoed Researchers from Philips Research in the Netherlands have demonstrated a fast, flexible computer display that is nearly as thin as paper. |
Technology Research News September 8, 2004 |
Nanotube Transistor Has Power Aiming to make electrical componets faster, researchers are working to make components from carbon nanotubes, which are rolled-up sheets of carbon atoms that can be smaller than a nanometer in diameter. |
Technology Research News July 16, 2003 |
Gel yields nanotube plastic Researchers from Japan have found a way to distribute nanotubes evenly throughout a gel to form an electrically versatile material. |
Technology Research News October 22, 2003 Eric Smalley |
Nanowires make flexible circuits Nanowires might one day be used to make microscopic machines. But before then they could help liberate computer circuits from the rigid, expensive confines of silicon chips. A process that makes thin films from semiconductor nanowires improves the prospects for plastic electronics and electronic paper. |
Military & Aerospace Electronics July 2008 John McHale |
Military turning toward COTS displays Military designers are realizing they can reap major performance benefits at half the cost if they start using commercial off the shelf displays, especially in command-and-control applications |
CIO May 15, 2001 John Edwards |
Upholding Moore's Law What's .03 microns long and can be turned on and off 10 billion times a second? It's a new transistor that has the potential to keep Moore's Law on the books for at least several more years... |
Chemistry World June 27, 2013 Ian Randall |
Molecular transistor for cheaper, greener electronics Chinese and Danish scientists have placed a transistor made from a single molecular monolayer onto an electronic chip. The new chip harnesses graphene oxide as a transparent electrode so that light can be used to switch the transistor. |
IEEE Spectrum November 2011 Ahmed & Schuegraf |
Transistor Wars Rival architectures face off in a bid to keep Moore's Law alive. In May, Intel announced the most dramatic change to the architecture of the transistor since the device was invented. |
InternetNews June 13, 2006 David Needle |
3-D Transistors in The Works Intel's researchers are closer to development of processors that use "tri-gate" or three-dimensional transistors, the microscopic, silicon-based switches that process the ones and zeros of the digital world. |
Chemistry World February 28, 2007 Richard Van Noorden |
First Graphene Transistors May Herald Future of Electronic Chips Researchers claim to have created the world's first practical transistors cut from ribbons of graphene, a single layer of carbon atoms. |