Similar Articles |
|
Technology Research News September 22, 2004 |
Nanowire Makes Standup Transistor Researchers have devised a simple way to make a set of vertical transistors from nanowires. |
Technology Research News December 17, 2003 |
Organic transistors get small Researchers from Cornell University have shown that it is possible to fabricate useful organic thin film transistors that have a channel length as small as 30 nanometers. The smaller the channel, the faster the transistor. Previously, organic TFT channel lengths were limited to about 100 nm. |
Technology Research News December 3, 2003 |
Carbon boosts plastic circuits Researchers from the California Institute of Technology have devised an inexpensive way to add better-conducting organic source and drain electrodes to organic thin-film transistors. |
Technology Research News June 4, 2003 Kimberly Patch |
Plastic transistors go vertical Researchers from the University of Cambridge in England have brought inexpensive, practical organic transistors a step closer to your grocery cart by devising a pair of processes that form small, vertical transistors from layers of printed polymer. |
Technology Research News August 25, 2004 |
Hybrid Nanowire Makes Transistor One challenge in making minuscule electronic devices from nanoscale components is wiring the components together. Researchers have found a way to transform sections of semiconducting silicon nanowires into metallic, or conducting, nickel silicide. |
Technology Research News November 5, 2003 |
Process prints silicon circuits Researchers from Princeton University have demonstrated a way to use a flexible stamp to print thin-film transistors. The researchers' eventual goal is to directly print electronics on flexible surfaces. |
Technology Research News March 23, 2005 |
Layers promise cheap circuits The challenge is making organic transistors that work well electronically. |
Technology Research News October 22, 2003 Eric Smalley |
Nanowires make flexible circuits Nanowires might one day be used to make microscopic machines. But before then they could help liberate computer circuits from the rigid, expensive confines of silicon chips. A process that makes thin films from semiconductor nanowires improves the prospects for plastic electronics and electronic paper. |
Technology Research News March 10, 2004 Kimberly Patch |
Tiny pumps drive liquid circuits Researchers from the University of Illinois at Urbana-Champaign and Lucent Technologies' Bell Laboratories have combined microfluidics and organic electronics to make a tunable plastic transistor that could enable low-cost methods to drive, control and monitor labs-on-a-chip. The device can also use tiny amounts of fluid to adjust optical devices. |
IEEE Spectrum May 2013 Alexander Hellemans |
Nanowire Transistors Could Keep Moore's Law Alive Researchers are perfecting ways to produce gate-all-around devices |
Technology Research News March 9, 2005 |
Nanotubes Boost Molecular Devices Researchers have constructed an extremely small transistor from a pair of single-walled carbon nanotubes and organic molecules. The tiny transistor could eventually be used in ultra-low-power electronics. |
Technology Research News April 7, 2004 Eric Smalley |
Angle speeds plastic transistor Going with the flow is a good way to pick up speed, particularly for plastic transistors. Rotating the crystal 180 degrees can change the transistor's performance by as much as 3.5 times. |
Technology Research News June 4, 2003 |
DNA part makes transistor Researchers from the University of Lecce in Italy and the University of Bologna in Italy have produced a transistor made from a derivative of one of the four bases that make up DNA. |
Technology Research News December 17, 2003 Eric Smalley |
Microfluidics make flat screens A new method for making big, cheap flat screen displays is a bit like making muffins. Pour liquid polymer into microfluidic channels aligned above an array of electrodes, let cure, and you have organic thin film transistors. |
Technology Research News February 23, 2005 |
Tiny transistors sniff chemicals Researchers from the University of Texas at Austin have found that the chemical sensing abilities of infinitesimally small transistors made from thin films of the organic crystal pentacene are quite different from those of larger transistors made from the same materials. |
Technology Research News February 26, 2003 |
Stamp bangs out plastic circuits Today's transistors are etched from silicon wafers in a multi-step process that involves laser beams, chemicals and clean rooms. A simpler process would make for cheaper computer chips, and a gentler process would allow for transistors of different materials. |
Technology Research News July 28, 2004 |
Process prints silicon on plastic The components could be used in flexible large-area displays, radiofrequency ID tags, sensors, and flexible applications like reconfigurable antennas. |
Technology Research News November 19, 2003 |
Plastic display circuit shines Researchers from the University of Tokyo have taken a step forward by fabricating on a glass surface a circuit that contains an organic light-emitting diode and an organic thin-film transistor. The diode was bright enough to be used in a display, according to the researchers. |
Chemistry World December 10, 2009 Simon Hadlington |
Flexible organic flash memory Researchers have succeeded in making an elusive component of organic electronics: a flash memory transistor that can be incorporated into a thin, flexible plastic sheet. |
Technology Research News January 14, 2004 |
Nanotubes grown on plastic Researchers from the University of Cambridge in England have devised a way to grow vertical forests of carbon nanotubes on flexible plastic. |
Technology Research News June 16, 2004 |
Silicon Nanowires Grown in Place Researchers have found a way to grow nanowires between pairs of metal electrodes deposited on silicon wafers. |
Technology Research News March 26, 2003 |
Tilted trenches turn out tiny wires Researchers from UCLA, UCSB, and Cal Tech have found a way to make arrays of closely-spaced and crossed metal and semiconductor nanowires. |
Technology Research News January 28, 2004 |
Nanotubes tied to silicon circuit Connecting minuscule nanotube transistors to traditional silicon transistors enables the atomic-scale electronics to communicate with existing electronic equipment. |
Technology Research News February 9, 2005 |
Nanotubes on plastic speed circuits Many researchers are working to make plastic electronics that are as fast as today's silicon electronic components -- with the promise to enable flexible, inexpensive and very-large area computer screens. One group of researchers has taken a significant step closer to this goal. |
IEEE Spectrum April 2012 Neil Savage |
Graphene's New Rival Molybdenum disulfide helps graphene transistors work better -- and it makes good nanocircuits on its own, too |
Technology Research News June 15, 2005 |
Nanowire Computer Circuits Debut Researchers have found a way to paint molecular-size circuitry onto glass. The method is potentially very low-cost, and could eventually be used to make computer chips that pack extremely tiny and thus powerful circuits. |
IEEE Spectrum December 2007 Joshua J Romero |
Japanese Engineers Turn High-k Dielectric Transistor Problem on Its Head One gate metal and two high-k dielectrics could mean a cheaper and easier 45-nanometer CMOS manufacturing process for transistors. |
Chemistry World November 29, 2011 Kate McAlpine |
Print quality nanotubes control LED switching Researchers in California have developed a way to print transistors made of carbon nanotubes and have used them to turn an organic light emitting diode on and off. |
IEEE Spectrum October 2007 Bohr et al. |
The High-k Solution Microprocessors coming out this fall are the result of the first big redesign in CMOS transistors since the late 1960s. |
IEEE Spectrum May 2011 Wager & Hoffman |
Thin, Fast, and Flexible Semiconductors Amorphous oxide semiconductors promise to make flat-panel displays faster and sharper than today's silicon standby. |
Technology Research News January 26, 2005 |
Plastic Memory Retains Data Researchers in Austria have borrowed a technique from audio recording technology to fashion a new type of computer memory made from organic, or plastic materials. |
Technology Research News April 9, 2003 |
Sandwich promises cheap storage University of California at Los Angeles researchers have used a simple, inexpensive manufacturing technique to fabricate tiny sandwiches of organic material and metal that can be used as electrical switches. |
Technology Research News January 28, 2004 Eric Smalley |
Chemicals map nanowire arrays There are two challenges to getting nanowire arrays ready for prime time -- finding ways of accessing any particular nanowire junction, and connecting the devices to the outside world. Chemically modifying the right junctions could solve both problems. |
Technology Research News December 15, 2004 |
See-Through Circuits Speed up Researchers have moved transparent semiconductors forward with an indium gallium zinc oxide mixture that can be deposited on plastic, is transparent, and potentially performs one to three orders of magnitude better than today's plastic transistors. |
Technology Research News January 26, 2005 |
Metals Speed Clear Circuits Researchers have improved the performance of a new type of transparent transistor. The zinc tin oxide thin-film transistor is transparent, difficult to scratch, and conducts electricity an order of magnitude faster than previous efforts using the same class of material. |
IEEE Spectrum November 2007 Sarah Adee |
Transistors Go Vertical The semiconductor industry fights silicon sprawl by building up, not out. Today's CMOS transistor is planar, but chip makers are exploring more power-efficient three-dimensional structures as well as a planar structure with two gates. |
IEEE Spectrum November 2011 Ahmed & Schuegraf |
Transistor Wars Rival architectures face off in a bid to keep Moore's Law alive. In May, Intel announced the most dramatic change to the architecture of the transistor since the device was invented. |
Technology Research News September 22, 2004 Eric Smalley |
Flexible Sensors Make Robot Skin Researchers have devised pressure-sensor arrays that promise to give objects like rugs and robots the equivalent of one aspect of skin -- pressure sensitivity. |
Technology Research News September 8, 2004 |
Nanotube Transistor Has Power Aiming to make electrical componets faster, researchers are working to make components from carbon nanotubes, which are rolled-up sheets of carbon atoms that can be smaller than a nanometer in diameter. |
Technology Research News June 30, 2004 |
Paper promises better e-paper It is clear that computer displays will someday be thin and flexible enough to roll up, enabled by plastic electronics. |
Technology Research News June 18, 2003 |
See-through circuits closer The transparent computer displays featured in the film Minority Report were made possible by special effects, but real-world transparent electronics are on the horizon. |
Technology Research News October 8, 2003 |
Process orders nanowire arrays Harvard University researchers have found a way to neatly layer and pattern rows of nanowires. |
PC World December 3, 2001 Martyn Williams |
AMD Announces Another Chip Advance Company's new transistor is five times smaller than current models, leading to faster and more complex chips... |
PC Magazine March 10, 2004 Alfred Poor |
Flexible Display Forecast After years of slow but steady progress, momentum is picking up for one of technology's Holy Grails: the flexible plastic display. |
IEEE Spectrum March 2013 Joachim N. Burghartz |
Make Way for Flexible Silicon Chips We need them because thin, pliable organic semiconductors are too slow to serve in tomorrow's chips. Seamless integration of computing into everyday objects isn't quite here yet. |
IEEE Spectrum September 2008 |
Paper Transistor Researchers from Universidade Nova de Lisboa, in Portugal, say they've made a transistor in which paper acts as a functional component. |
Technology Research News February 9, 2005 |
Silicon nanocrystal transistor shines A nanocrystal field-effect light-emitting device (FELED) could be used to integrate light sources on computer chips. This would allow the light sources and control circuits of display and communications device to be fabricated together, making for a faster, cheaper manufacturing process. |
Technology Research News July 16, 2003 Kimberly Patch |
Electricity shapes nano plastic Plastic is a popular material for electronics these days because it's light and flexible. But today's chipmaking processes tend toward hard crystals, not soft polymers. A method that yields microscopic plastic structures could help, and it's based on a readily-available resource -- electricity. |
Technology Research News May 5, 2004 Eric Smalley |
Memory Stores Three Bits in One Researchers have built a prototype molecular memory device that stores three bits in the same spot, multiplying storage density without increasing the device footprint. |
IEEE Spectrum April 2012 Liu et al. |
MEMS Switches for Low-Power Logic A modern twist on a trusted old technology -- the electromechanical relay -- could lead to ultralow-power chips |