Similar Articles |
|
Scientific American October 17, 2005 Graham P. Collins |
Quantum Bug Physicists must overcome a fundamental obstacle before quantum computers can become a practical reality: decoherence, which is the loss of the very quantum properties that such computers would rely on. |
Popular Mechanics May 2007 Seth Fletcher |
Quantum Computing: 5-Minute Know-It-All The holy grail of computing is still out of reach -- but it's getting closer. |
Technology Research News January 29, 2003 Eric Smalley |
Quantum computers go digital One of the challenges of building a quantum computer is reducing errors. Researchers from the University of Wisconsin at Madison have eased the problem with a method that reduces error rates by two orders of magnitude. |
Technology Research News December 11, 2002 Eric Smalley |
Design links quantum bits Realizing the potential of phenomenally fast quantum computers means having to link thousands of quantum bits, which are the transistors of such computers. So far researchers have been able to connect only a few. A scheme for linking many tiny superconducting loops may pull it all together. |
IEEE Spectrum March 2011 Saswato R. Das |
A Crowd of Quantum Entanglements Phosphorus-in-silicon system could lead to quantum computers |
Technology Research News March 12, 2003 Eric Smalley |
Quantum chips advance Researchers have entangled a pair of electronic qubits in an integrated circuit. The work is a milestone on the road to chip-based, mind-bogglingly fast quantum computers. |
IEEE Spectrum September 2007 Lieven Vandersypen |
Dot-to-Dot Design Researchers are connecting tiny puddles of electrons in a chip and making them compute -- the quantum way. |
Technology Research News May 21, 2003 |
Big qubits linked over distance Researchers working on quantum computing managed to entangle a pair of large quantum bits that were spaced nearly a millimeter apart. |
Technology Research News December 29, 2004 |
Atom Demo Fixes Quantum Errors Researchers have demonstrated a way to correct errors in qubits of beryllium ions held in an electromagnetic trap. |
Technology Research News February 26, 2003 Eric Smalley |
Quantum computing catches the bus National Institute of Standards and Technology (NIST) researchers have tapped an aspect of classical computers and a pair of weird particle traits to allow distant particles, or qubits, to communicate as though they were in contact. |
Scientific American March 6, 2006 Graham P. Collins |
Ion Power In their quest to build a computer that would take advantage of quantum mechanics, physicists are pursuing a number of disparate technologies. Teams working with trapped atomic ions have demonstrated several landmark feats that the other approaches will be hard-pressed to match. |
Technology Research News August 13, 2003 Eric Smalley |
Quantum computer keeps it simple Controlling fleeting quantum particles usually requires making extraordinarily precise devices. A proposal that calls for chaperoning pairs of particles and getting all of the particles in a quantum computer to sing the same tune could ease this burden. |
Technology Research News August 25, 2004 Eric Smalley |
Five Photons Linked Researchers have entangled five photons - a key step in quantum computing which would make it possible to check computations for errors and teleport quantum information within and between computers. |
Technology Research News January 14, 2004 Eric Smalley |
Quantum dice debut Researchers have overcome a major obstacle to generating random numbers on quantum computers by limiting the possibilities in the otherwise unlimited randomness of a set of quantum particles. |
IEEE Spectrum August 2007 Stick et al. |
The Trap Technique In this first part of a two-part series, the authors discuss how today's computers are running out of room for classical physics to work and how working with the quantum nature of things instead of against it will open up vast new frontiers for computing. |
National Defense March 2005 Joe Pappalardo |
Researchers Cast Wary Eye On Atomic-Level Computing Experts point out that quantum computers could execute calculations several millions of times faster than conventional systems, but that the technology still is years away from becoming truly functional. |
Technology Research News January 1, 2003 Eric Smalley |
Electron pairs power quantum plan Researchers from HP Laboratories and Qinetiq plc in England have mapped out a way to manipulate a pair of very cold electrons that could eventually lead to practical quantum computers made from quantum dots, or tiny specks of the type of semiconductor material used in electronics. |
IEEE Spectrum September 2008 Joshua J. Romero |
Physicist Named MacArthur Fellow for Work on Quantum Computing Alexei Kitaev's theoretical studies may lead the way to quantum computers that catch their own errors |
Technology Research News December 15, 2004 |
Scheme Simplifies Quantum Chips Researchers have brought practical quantum computers a step closer by proposing a type of quantum bit that is relatively easy to build. |
Technology Research News April 21, 2004 Eric Smalley |
Optical Quantum Memory Designed Quantum computers that use photons rather than atoms or electrons are appealing because the equipment needed to handle them can be relatively simple. A scheme for trapping photons in fiber-optic loops and replacing the photons that the loops absorb could be the answer. |
IEEE Spectrum December 2007 Sarah Adee |
Scientists Start Quest for the Silicon Quantum Computer Sandia research could link silicon circuits to quantum computers. |
Technology Research News April 7, 2004 Eric Smalley |
Sturdy quantum computing demoed The atomic or subatomic components of prototype quantum computers usually have to be carefully sheltered from the environment, but a method that makes qubits immune to noise shows promise. |
Technology Research News September 10, 2003 Eric Smalley |
Electron teams make bigger qubits Making quantum computers from electronic chips rather than cumbersome laboratory equipment requires control over individual electrons. A scheme that has a string of electrons acting as one could ease the task by expanding the target to a whopping 250 millionths of a millimeter. |
PC Magazine September 26, 2007 Lisa Zyga |
Quantum Computers Get Smarter A recent innovation could make computing with light viable. |
Chemistry World January 15, 2010 Andy Extance |
Quantum computer hits hydrogen bullseye A basic quantum computer has successfully tackled one of the most challenging tasks facing chemists today - calculating molecular energy from basic scientific principles. |
Technology Research News April 9, 2003 Eric Smalley |
Fiber loop makes quantum memory A relatively simple device that sends individual photons cycling through a fiber-optic loop could provide the memory needed to make ultra powerful computers that use the quantum states of light as bits. |
Wired September 2001 Mark K. Anderson |
Liquid Logic Say good-bye to the either-or binary digit. Quantum computing is riding a new wave of supercool subatomic bits that can be both 1 and 0 at once... |
IEEE Spectrum January 2009 Saswato Das |
Ion Teleportation Scheme Could Scale Up Quantum Computers Scientists have teleported the quantum state of one trapped ion onto another a meter away |
Technology Research News December 19, 2005 |
Quantum computing: qubits Quantum bits, or qubits, are the quantum equivalent of the transistors that make up today's computers. There are four established qubit candidates: ion traps, quantum dots, semiconductor impurities, and superconducting circuits. |
Chemistry World July 12, 2011 Kate McAlpine |
Bit Part for Diethylfluoromalonate in Reaction Model A quantum simulation has successfully described the progression of a chemical reaction for the first time. |
Technology Research News April 6, 2005 |
Optics Demo Does Quantum Logic Researchers from the University of Science and Technology of China and the University of Heidelberg in Germany have demonstrated a method of using four photons to form a logic gate that can be used for quantum computing. |
BusinessWeek March 15, 2004 John Carey |
Physics: "Putting The Weirdness To Work" Scientists say quantum materials will be the basis for amazing devices, but when? |
IEEE Spectrum June 2012 Michael Brooks |
Quantum Cash and the End of Counterfeiting Physicists say they can make money that can't be copied -- at least in theory |
Technology Research News July 14, 2004 Eric Smalley |
Teleport lifts quantum computing Researchers transported the states of charged atoms and showed that it is possible to do so on demand. The feat boosts the prospects for building quantum computers that employ trapped ions, quantum particles that live long enough to carry out multiple computations. |
Scientific American April 18, 2005 Charles Q. Choi |
Qubit Twist Bending nanotubes as mechanical quantum bits. |
Technology Research News July 28, 2004 |
Particle chains make quantum wires The method is a step toward building quantum computers, which have the potential to solve certain types of very large problems. |
Technology Research News August 11, 2004 Eric Smalley |
Chips measure electron spin Practical quantum computers are at least a decade away, and some researchers are betting that they will never be built. But a pair of recent experiments may prove them wrong. |
Scientific American August 2007 JR Minkel |
The Gedanken Experimenter In putting teleportation, entanglement and other quantum oddities to the test, physicist Anton Zeilinger hopes to find out just how unreal quantum reality can get. |
Technology Research News September 10, 2003 |
Quantum computing has limits Researchers from the University of Arkansas and Texas A&M University have shown that quantum computers, while theoretically useful for very large problems, are likely to always need very large amounts of power. |
CIO March 15, 2002 John Edwards |
Quantum Leap A quantum physics breakthrough could turn pipe dreams, such as ultra-high-speed quantum computers and teleportation, into real-world technologies... |
Technology Research News November 3, 2004 Eric Smalley |
Single Field Shapes Quantum Bits Researchers have recently realized that it may be possible to control the electrons in a quantum computer using a single magnetic field rather than having to produce extremely small, precisely focused magnetic fields for each electron. |
Technology Research News June 1, 2005 |
Magnetic Resonance Goes Nano Researchers have built a nuclear magnetic resonance device that has the potential to overcome the quantum bit limit because it is small enough to fit on a computer chip. |
IEEE Spectrum August 2008 Mark Anderson |
Quantum Weirdness: Two Times Zero Doesn't Always Equal Zero Researchers think they can extract quantum information from two noisy channels that are individually useless |
IEEE Spectrum April 2008 Saswato R. Das |
Quantum Cryptography Cracked? Swedes find vulnerability in supposedly secure quantum cryptography system. |
IEEE Spectrum December 2008 Saswato R. Das |
Physicists Invent a Chip That Stores a Photon's Quantum State A step toward the "quantum repeaters" needed to make long-distance quantum-cryptography networks |
The Motley Fool May 26, 2006 Jack Uldrich |
Harris & Harris Seeks Some Sun and Surf If you're looking for a little sun (in the form of solar power) and fun (in the form of quantum computing), you might want to consider an investment in Harris & Harris. |
IEEE Spectrum March 2006 J. R. Minkel |
Quantum Leap For Quantum Computing The most promising technology for constructing an ultrapowerful quantum computer is the ion trap, a nest of electrodes that holds ions in midair. Researchers have now built the first such ion-trap chips. |
IndustryWeek November 16, 2011 David Drickhamer |
Future Now Five technology developments changing industry as we know it. |
Technology Research News June 2, 2004 Eric Smalley |
Atom-Photon Link Demoed Getting atoms and photons to exchange information is crucial for many quantum computer designs. The first verified atom-photon entanglement shows that it's not so hard to do, as long as you can accept a low success rate. |
Chemistry World June 20, 2013 Jim Al-Khalili |
Change: the only constant Today, there is much interest in a wide range of biological phenomena that may have a quantum origin, from our sense of smell to photosynthesis and mutations in DNA. |