Similar Articles |
|
Technology Research News July 14, 2004 Eric Smalley |
Teleport lifts quantum computing Researchers transported the states of charged atoms and showed that it is possible to do so on demand. The feat boosts the prospects for building quantum computers that employ trapped ions, quantum particles that live long enough to carry out multiple computations. |
Technology Research News February 12, 2003 Eric Smalley |
Teleportation goes the distance Teleportation makes it possible to transmit the quantum states, or structural information, of photons from one place to another. And making photons from one location materialize at another without traveling the distance between opens the way for sending messages long distances. |
Technology Research News April 6, 2005 |
Optics Demo Does Quantum Logic Researchers from the University of Science and Technology of China and the University of Heidelberg in Germany have demonstrated a method of using four photons to form a logic gate that can be used for quantum computing. |
Technology Research News December 29, 2004 |
Atom Demo Fixes Quantum Errors Researchers have demonstrated a way to correct errors in qubits of beryllium ions held in an electromagnetic trap. |
Technology Research News May 21, 2003 |
Big qubits linked over distance Researchers working on quantum computing managed to entangle a pair of large quantum bits that were spaced nearly a millimeter apart. |
Technology Research News April 21, 2004 |
Photons Teleported Six Kilometers Real-life teleportation will never come close to the teleportation of fiction, but instantly sending single quantum particles like photons from one place to another has been proved possible in laboratory experiments and promises to extend the reach of quantum cryptography, which offers potentially perfect security. |
Technology Research News February 26, 2003 Eric Smalley |
Quantum computing catches the bus National Institute of Standards and Technology (NIST) researchers have tapped an aspect of classical computers and a pair of weird particle traits to allow distant particles, or qubits, to communicate as though they were in contact. |
Technology Research News December 11, 2002 Eric Smalley |
Design links quantum bits Realizing the potential of phenomenally fast quantum computers means having to link thousands of quantum bits, which are the transistors of such computers. So far researchers have been able to connect only a few. A scheme for linking many tiny superconducting loops may pull it all together. |
Technology Research News September 22, 2004 Eric Smalley |
Bank Transfer Demos Quantum Crypto As quantum cryptography nears practical application, researchers are working on the next generation of the technology, which includes the weird quantum phenomenon of entanglement. |
Technology Research News April 21, 2004 Eric Smalley |
Optical Quantum Memory Designed Quantum computers that use photons rather than atoms or electrons are appealing because the equipment needed to handle them can be relatively simple. A scheme for trapping photons in fiber-optic loops and replacing the photons that the loops absorb could be the answer. |
Technology Research News March 12, 2003 Eric Smalley |
Quantum chips advance Researchers have entangled a pair of electronic qubits in an integrated circuit. The work is a milestone on the road to chip-based, mind-bogglingly fast quantum computers. |
Technology Research News February 25, 2004 Eric Smalley |
Simple optics make quantum relay Quantum cryptography devices and networks, which transport photons whose properties can be used to represent the 1s and 0s of digital information, could also benefit from repeaters. |
IEEE Spectrum January 2009 Saswato Das |
Ion Teleportation Scheme Could Scale Up Quantum Computers Scientists have teleported the quantum state of one trapped ion onto another a meter away |
Technology Research News January 29, 2003 Eric Smalley |
Quantum computers go digital One of the challenges of building a quantum computer is reducing errors. Researchers from the University of Wisconsin at Madison have eased the problem with a method that reduces error rates by two orders of magnitude. |
Technology Research News April 9, 2003 Eric Smalley |
Fiber loop makes quantum memory A relatively simple device that sends individual photons cycling through a fiber-optic loop could provide the memory needed to make ultra powerful computers that use the quantum states of light as bits. |
Technology Research News March 10, 2004 |
Atom spouts photons on demand California Institute of Technology researchers have fashioned a single atom into a light source that generates single photons on demand. |
Technology Research News June 2, 2004 Eric Smalley |
Atom-Photon Link Demoed Getting atoms and photons to exchange information is crucial for many quantum computer designs. The first verified atom-photon entanglement shows that it's not so hard to do, as long as you can accept a low success rate. |
Technology Research News September 10, 2003 |
Quantum computing has limits Researchers from the University of Arkansas and Texas A&M University have shown that quantum computers, while theoretically useful for very large problems, are likely to always need very large amounts of power. |
Technology Research News December 1, 2004 |
Demo Advances Quantum Networking Researchers have transferred information stored in the properties of a cloud of rubidium atoms to the properties of a single photon. The ability to transfer information from atoms to photons is needed for quantum computers. |
IEEE Spectrum March 2011 Saswato R. Das |
A Crowd of Quantum Entanglements Phosphorus-in-silicon system could lead to quantum computers |
Technology Research News December 15, 2004 |
Scheme Simplifies Quantum Chips Researchers have brought practical quantum computers a step closer by proposing a type of quantum bit that is relatively easy to build. |
Technology Research News January 28, 2004 |
Technique detects quantum state Researchers from the University of Rome in Italy have pushed theorized "perfect" quantum cryptography schemes forward by demonstrating a method for detecting quantum entanglement among subatomic particles. |
IEEE Spectrum June 2012 Michael Brooks |
Quantum Cash and the End of Counterfeiting Physicists say they can make money that can't be copied -- at least in theory |
Technology Research News August 13, 2003 Eric Smalley |
Quantum computer keeps it simple Controlling fleeting quantum particles usually requires making extraordinarily precise devices. A proposal that calls for chaperoning pairs of particles and getting all of the particles in a quantum computer to sing the same tune could ease this burden. |
Technology Research News January 14, 2004 Eric Smalley |
Quantum dice debut Researchers have overcome a major obstacle to generating random numbers on quantum computers by limiting the possibilities in the otherwise unlimited randomness of a set of quantum particles. |
Scientific American August 2007 JR Minkel |
The Gedanken Experimenter In putting teleportation, entanglement and other quantum oddities to the test, physicist Anton Zeilinger hopes to find out just how unreal quantum reality can get. |
Scientific American October 17, 2005 Graham P. Collins |
Quantum Bug Physicists must overcome a fundamental obstacle before quantum computers can become a practical reality: decoherence, which is the loss of the very quantum properties that such computers would rely on. |
Technology Research News May 4, 2005 |
Noisy Snapshots Show Quantum Weirdness Researchers have devised a relatively simple way to detect a pair of entangled, or linked atoms. The detection ability advances quantum computer and quantum communications research. |
Technology Research News February 11, 2004 |
Electricity teleportation devised Researchers from Leiden University in the Netherlands have devised a way to teleport electricity. |
Technology Research News April 7, 2004 Eric Smalley |
Sturdy quantum computing demoed The atomic or subatomic components of prototype quantum computers usually have to be carefully sheltered from the environment, but a method that makes qubits immune to noise shows promise. |
Scientific American March 6, 2006 Graham P. Collins |
Ion Power In their quest to build a computer that would take advantage of quantum mechanics, physicists are pursuing a number of disparate technologies. Teams working with trapped atomic ions have demonstrated several landmark feats that the other approaches will be hard-pressed to match. |
Technology Research News July 28, 2004 |
Particle chains make quantum wires The method is a step toward building quantum computers, which have the potential to solve certain types of very large problems. |
Technology Research News January 1, 2003 Eric Smalley |
Electron pairs power quantum plan Researchers from HP Laboratories and Qinetiq plc in England have mapped out a way to manipulate a pair of very cold electrons that could eventually lead to practical quantum computers made from quantum dots, or tiny specks of the type of semiconductor material used in electronics. |
CIO March 15, 2002 John Edwards |
Quantum Leap A quantum physics breakthrough could turn pipe dreams, such as ultra-high-speed quantum computers and teleportation, into real-world technologies... |
Technology Research News October 20, 2004 |
Crystal links ultraviolet photons Researchers from Tohoku University in Japan have moved the quest to control entanglement forward with a method that uses the energy from a pair of photons to produce a pair of entangled photons that have the same energy state as the original photons |
Technology Research News August 10, 2005 Eric Smalley |
Pixels speed quantum crypto Crossing quantum physics with computer displays yields a new way of encoding information in photons. Using photons as pixels lets researchers encode more information per photon, promising higher data rates for quantum cryptography. |
Technology Research News December 19, 2005 |
Quantum computing: qubits Quantum bits, or qubits, are the quantum equivalent of the transistors that make up today's computers. There are four established qubit candidates: ion traps, quantum dots, semiconductor impurities, and superconducting circuits. |
Technology Research News September 10, 2003 Eric Smalley |
Electron teams make bigger qubits Making quantum computers from electronic chips rather than cumbersome laboratory equipment requires control over individual electrons. A scheme that has a string of electrons acting as one could ease the task by expanding the target to a whopping 250 millionths of a millimeter. |
National Defense May 2012 Eric Beidel |
Air Force Seeks Impossible-to-Intercept Communications The Air Force has enlisted a group of researchers to create quantum memories based on the interaction between light and matter that would result in a new form of encryption that some experts have called "perfect." |
Technology Research News January 14, 2004 |
Atoms make quantum coprocessor Researchers from Brussels Free University in Belgium (ULB) and the Niels Bohr Institute in Denmark have shown that the collective spin of clouds of atoms can be used to compute. |
Technology Research News December 15, 2004 |
Light Writes Info Into Atoms Researchers have demonstrated that it is possible to transfer information encoded in the properties of photons to atoms. |
IEEE Spectrum September 2008 Joshua J. Romero |
Physicist Named MacArthur Fellow for Work on Quantum Computing Alexei Kitaev's theoretical studies may lead the way to quantum computers that catch their own errors |
Technology Research News November 3, 2004 Eric Smalley |
Single Field Shapes Quantum Bits Researchers have recently realized that it may be possible to control the electrons in a quantum computer using a single magnetic field rather than having to produce extremely small, precisely focused magnetic fields for each electron. |
IEEE Spectrum January 2010 Erico Guizzo |
Loser: D-Wave Does Not Quantum Compute D-Wave Systems' quantum computers look to be bigger, costlier, and slower than conventional ones |
National Defense March 2005 Joe Pappalardo |
Researchers Cast Wary Eye On Atomic-Level Computing Experts point out that quantum computers could execute calculations several millions of times faster than conventional systems, but that the technology still is years away from becoming truly functional. |
Chemistry World July 12, 2011 Kate McAlpine |
Bit Part for Diethylfluoromalonate in Reaction Model A quantum simulation has successfully described the progression of a chemical reaction for the first time. |
IEEE Spectrum September 2007 Lieven Vandersypen |
Dot-to-Dot Design Researchers are connecting tiny puddles of electrons in a chip and making them compute -- the quantum way. |
IEEE Spectrum December 2008 Saswato R. Das |
Physicists Invent a Chip That Stores a Photon's Quantum State A step toward the "quantum repeaters" needed to make long-distance quantum-cryptography networks |
Technology Research News August 11, 2004 Eric Smalley |
Chips measure electron spin Practical quantum computers are at least a decade away, and some researchers are betting that they will never be built. But a pair of recent experiments may prove them wrong. |
Industrial Physicist Jennifer Ouellette |
Quantum Key Distribution Several companies have focused on bringing one aspect of quantum communications to market, quantum key distribution, used to exchange secret keys that protect data during transmission. |